\( \DeclareMathOperator{\abs}{abs} \newcommand{\ensuremath}[1]{\mbox{$#1$}} \)
Curvilinear Coordinates
--> | load("linearalgebra")$ |
1 Polar coordinates
--> | v: [r·cos(φ),r·sin(φ)]; |
\[\]\[\tag{} \left[ r \cos{\left( \phi \right) }\mathop{,}r \sin{\left( \phi \right) }\right] \]
--> | D: diff(v); |
\[\]\[\tag{} \left[ \cos{\left( \phi \right) } \mathop{del}(r)\mathop{-}r \sin{\left( \phi \right) } \mathop{del}\left( \phi \right) \mathop{,}r \cos{\left( \phi \right) } \mathop{del}\left( \phi \right) \mathop{+}\sin{\left( \phi \right) } \mathop{del}(r)\right] \]
--> | D . D; |
\[\]\[\tag{%o4} {{\left( \cos{\left( \phi \right) } \mathop{del}(r)\mathop{-}r \sin{\left( \phi \right) } \mathop{del}\left( \phi \right) \right) }^{2}}\mathop{+}{{\left( r \cos{\left( \phi \right) } \mathop{del}\left( \phi \right) \mathop{+}\sin{\left( \phi \right) } \mathop{del}(r)\right) }^{2}}\]
--> | trigsimp(D . D); |
\[\]\[\tag{%o5} {{r}^{2}} {{\mathop{del}\left( \phi \right) }^{2}}\mathop{+}{{\mathop{del}(r)}^{2}}\]
--> | J: jacobian(v,[r,φ]); |
\[\]\[\tag{} \begin{pmatrix}\cos{\left( \phi \right) } & \mathop{-}\left( r \sin{\left( \phi \right) }\right) \\ \sin{\left( \phi \right) } & r \cos{\left( \phi \right) }\end{pmatrix}\]
--> | invert(J); |
\[\]\[\tag{%o7} \begin{pmatrix}\frac{r \cos{\left( \phi \right) }}{r {{\sin{\left( \phi \right) }}^{2}}\mathop{+}r {{\cos{\left( \phi \right) }}^{2}}} & \frac{r \sin{\left( \phi \right) }}{r {{\sin{\left( \phi \right) }}^{2}}\mathop{+}r {{\cos{\left( \phi \right) }}^{2}}}\\ \mathop{-}\left( \frac{\sin{\left( \phi \right) }}{r {{\sin{\left( \phi \right) }}^{2}}\mathop{+}r {{\cos{\left( \phi \right) }}^{2}}}\right) & \frac{\cos{\left( \phi \right) }}{r {{\sin{\left( \phi \right) }}^{2}}\mathop{+}r {{\cos{\left( \phi \right) }}^{2}}}\end{pmatrix}\]
--> | J_inv: trigsimp(invert(J)); |
\[\]\[\tag{\_ in} \begin{pmatrix}\cos{\left( \phi \right) } & \sin{\left( \phi \right) }\\ \mathop{-}\left( \frac{\sin{\left( \phi \right) }}{r}\right) & \frac{\cos{\left( \phi \right) }}{r}\end{pmatrix}\]
--> | first(J_inv); |
\[\]\[\tag{%o9} \left[ \cos{\left( \phi \right) }\mathop{,}\sin{\left( \phi \right) }\right] \]
--> | second(J_inv); |
\[\]\[\tag{%o10} \left[ \mathop{-}\left( \frac{\sin{\left( \phi \right) }}{r}\right) \mathop{,}\frac{\cos{\left( \phi \right) }}{r}\right] \]
2 Spherical coordinates
--> | w: r·[cos(φ)·sin(θ),sin(φ)·sin(θ),cos(θ)]; |
\[\]\[\tag{} \left[ r \sin{\left( \theta \right) } \cos{\left( \phi \right) }\mathop{,}r \sin{\left( \theta \right) } \sin{\left( \phi \right) }\mathop{,}r \cos{\left( \theta \right) }\right] \]
--> | JW: jacobian(w,[r,θ,φ]); |
\[\]\[\tag{} \begin{pmatrix}\sin{\left( \theta \right) } \cos{\left( \phi \right) } & r \cos{\left( \theta \right) } \cos{\left( \phi \right) } & \mathop{-}\left( r \sin{\left( \theta \right) } \sin{\left( \phi \right) }\right) \\ \sin{\left( \theta \right) } \sin{\left( \phi \right) } & r \cos{\left( \theta \right) } \sin{\left( \phi \right) } & r \sin{\left( \theta \right) } \cos{\left( \phi \right) }\\ \cos{\left( \theta \right) } & \mathop{-}\left( r \sin{\left( \theta \right) }\right) & 0\end{pmatrix}\]
--> | invert(JW); |
\[\]\[\tag{%o13} \begin{pmatrix}\frac{{{r}^{2}} {{\sin{\left( \theta \right) }}^{2}} \cos{\left( \phi \right) }}{\mathop{-}\left( r \sin{\left( \theta \right) } \sin{\left( \phi \right) } \left( \mathop{-}\left( r {{\sin{\left( \theta \right) }}^{2}} \sin{\left( \phi \right) }\right) \mathop{-}r {{\cos{\left( \theta \right) }}^{2}} \sin{\left( \phi \right) }\right) \right) \mathop{+}{{r}^{2}} {{\sin{\left( \theta \right) }}^{3}} {{\cos{\left( \phi \right) }}^{2}}\mathop{+}{{r}^{2}} {{\cos{\left( \theta \right) }}^{2}} \sin{\left( \theta \right) } {{\cos{\left( \phi \right) }}^{2}}} & \frac{{{r}^{2}} {{\sin{\left( \theta \right) }}^{2}} \sin{\left( \phi \right) }}{\mathop{-}\left( r \sin{\left( \theta \right) } \sin{\left( \phi \right) } \left( \mathop{-}\left( r {{\sin{\left( \theta \right) }}^{2}} \sin{\left( \phi \right) }\right) \mathop{-}r {{\cos{\left( \theta \right) }}^{2}} \sin{\left( \phi \right) }\right) \right) \mathop{+}{{r}^{2}} {{\sin{\left( \theta \right) }}^{3}} {{\cos{\left( \phi \right) }}^{2}}\mathop{+}{{r}^{2}} {{\cos{\left( \theta \right) }}^{2}} \sin{\left( \theta \right) } {{\cos{\left( \phi \right) }}^{2}}} & \frac{{{r}^{2}} \cos{\left( \theta \right) } \sin{\left( \theta \right) } {{\sin{\left( \phi \right) }}^{2}}\mathop{+}{{r}^{2}} \cos{\left( \theta \right) } \sin{\left( \theta \right) } {{\cos{\left( \phi \right) }}^{2}}}{\mathop{-}\left( r \sin{\left( \theta \right) } \sin{\left( \phi \right) } \left( \mathop{-}\left( r {{\sin{\left( \theta \right) }}^{2}} \sin{\left( \phi \right) }\right) \mathop{-}r {{\cos{\left( \theta \right) }}^{2}} \sin{\left( \phi \right) }\right) \right) \mathop{+}{{r}^{2}} {{\sin{\left( \theta \right) }}^{3}} {{\cos{\left( \phi \right) }}^{2}}\mathop{+}{{r}^{2}} {{\cos{\left( \theta \right) }}^{2}} \sin{\left( \theta \right) } {{\cos{\left( \phi \right) }}^{2}}}\\ \frac{r \cos{\left( \theta \right) } \sin{\left( \theta \right) } \cos{\left( \phi \right) }}{\mathop{-}\left( r \sin{\left( \theta \right) } \sin{\left( \phi \right) } \left( \mathop{-}\left( r {{\sin{\left( \theta \right) }}^{2}} \sin{\left( \phi \right) }\right) \mathop{-}r {{\cos{\left( \theta \right) }}^{2}} \sin{\left( \phi \right) }\right) \right) \mathop{+}{{r}^{2}} {{\sin{\left( \theta \right) }}^{3}} {{\cos{\left( \phi \right) }}^{2}}\mathop{+}{{r}^{2}} {{\cos{\left( \theta \right) }}^{2}} \sin{\left( \theta \right) } {{\cos{\left( \phi \right) }}^{2}}} & \frac{r \cos{\left( \theta \right) } \sin{\left( \theta \right) } \sin{\left( \phi \right) }}{\mathop{-}\left( r \sin{\left( \theta \right) } \sin{\left( \phi \right) } \left( \mathop{-}\left( r {{\sin{\left( \theta \right) }}^{2}} \sin{\left( \phi \right) }\right) \mathop{-}r {{\cos{\left( \theta \right) }}^{2}} \sin{\left( \phi \right) }\right) \right) \mathop{+}{{r}^{2}} {{\sin{\left( \theta \right) }}^{3}} {{\cos{\left( \phi \right) }}^{2}}\mathop{+}{{r}^{2}} {{\cos{\left( \theta \right) }}^{2}} \sin{\left( \theta \right) } {{\cos{\left( \phi \right) }}^{2}}} & \frac{\mathop{-}\left( r {{\sin{\left( \theta \right) }}^{2}} {{\sin{\left( \phi \right) }}^{2}}\right) \mathop{-}r {{\sin{\left( \theta \right) }}^{2}} {{\cos{\left( \phi \right) }}^{2}}}{\mathop{-}\left( r \sin{\left( \theta \right) } \sin{\left( \phi \right) } \left( \mathop{-}\left( r {{\sin{\left( \theta \right) }}^{2}} \sin{\left( \phi \right) }\right) \mathop{-}r {{\cos{\left( \theta \right) }}^{2}} \sin{\left( \phi \right) }\right) \right) \mathop{+}{{r}^{2}} {{\sin{\left( \theta \right) }}^{3}} {{\cos{\left( \phi \right) }}^{2}}\mathop{+}{{r}^{2}} {{\cos{\left( \theta \right) }}^{2}} \sin{\left( \theta \right) } {{\cos{\left( \phi \right) }}^{2}}}\\ \frac{\mathop{-}\left( r {{\sin{\left( \theta \right) }}^{2}} \sin{\left( \phi \right) }\right) \mathop{-}r {{\cos{\left( \theta \right) }}^{2}} \sin{\left( \phi \right) }}{\mathop{-}\left( r \sin{\left( \theta \right) } \sin{\left( \phi \right) } \left( \mathop{-}\left( r {{\sin{\left( \theta \right) }}^{2}} \sin{\left( \phi \right) }\right) \mathop{-}r {{\cos{\left( \theta \right) }}^{2}} \sin{\left( \phi \right) }\right) \right) \mathop{+}{{r}^{2}} {{\sin{\left( \theta \right) }}^{3}} {{\cos{\left( \phi \right) }}^{2}}\mathop{+}{{r}^{2}} {{\cos{\left( \theta \right) }}^{2}} \sin{\left( \theta \right) } {{\cos{\left( \phi \right) }}^{2}}} & \frac{r {{\sin{\left( \theta \right) }}^{2}} \cos{\left( \phi \right) }\mathop{+}r {{\cos{\left( \theta \right) }}^{2}} \cos{\left( \phi \right) }}{\mathop{-}\left( r \sin{\left( \theta \right) } \sin{\left( \phi \right) } \left( \mathop{-}\left( r {{\sin{\left( \theta \right) }}^{2}} \sin{\left( \phi \right) }\right) \mathop{-}r {{\cos{\left( \theta \right) }}^{2}} \sin{\left( \phi \right) }\right) \right) \mathop{+}{{r}^{2}} {{\sin{\left( \theta \right) }}^{3}} {{\cos{\left( \phi \right) }}^{2}}\mathop{+}{{r}^{2}} {{\cos{\left( \theta \right) }}^{2}} \sin{\left( \theta \right) } {{\cos{\left( \phi \right) }}^{2}}} & 0\end{pmatrix}\]
--> | JW_inv: trigsimp(invert(JW)); |
\[\]\[\tag{W\_ in} \begin{pmatrix}\sin{\left( \theta \right) } \cos{\left( \phi \right) } & \sin{\left( \theta \right) } \sin{\left( \phi \right) } & \cos{\left( \theta \right) }\\ \frac{\cos{\left( \theta \right) } \cos{\left( \phi \right) }}{r} & \frac{\cos{\left( \theta \right) } \sin{\left( \phi \right) }}{r} & \mathop{-}\left( \frac{\sin{\left( \theta \right) }}{r}\right) \\ \mathop{-}\left( \frac{\sin{\left( \phi \right) }}{r \sin{\left( \theta \right) }}\right) & \frac{\cos{\left( \phi \right) }}{r \sin{\left( \theta \right) }} & 0\end{pmatrix}\]
--> | determinant(JW); |
\[\]\[\tag{%o15} \mathop{-}\left( r \sin{\left( \theta \right) } \sin{\left( \phi \right) } \left( \mathop{-}\left( r {{\sin{\left( \theta \right) }}^{2}} \sin{\left( \phi \right) }\right) \mathop{-}r {{\cos{\left( \theta \right) }}^{2}} \sin{\left( \phi \right) }\right) \right) \mathop{+}{{r}^{2}} {{\sin{\left( \theta \right) }}^{3}} {{\cos{\left( \phi \right) }}^{2}}\mathop{+}{{r}^{2}} {{\cos{\left( \theta \right) }}^{2}} \sin{\left( \theta \right) } {{\cos{\left( \phi \right) }}^{2}}\]
--> | trigsimp(%); |
\[\]\[\tag{%o16} {{r}^{2}} \sin{\left( \theta \right) }\]
--> | dW: diff(w); |
\[\]\[\tag{} \]
--> | trigsimp(dW . dW); |
\[\]\[\tag{%o18} {{r}^{2}} {{\sin{\left( \theta \right) }}^{2}} {{\mathop{del}\left( \phi \right) }^{2}}\mathop{+}{{r}^{2}} {{\mathop{del}\left( \theta \right) }^{2}}\mathop{+}{{\mathop{del}(r)}^{2}}\]
--> | laplace(sin(t),t,s); |
\[\]\[\tag{%o20} \frac{1}{{{s}^{2}}\mathop{+}1}\]
--> | ilt(%o20,s,t); |
\[\]\[\tag{%o22} \sin{(t)}\]
Created with wxMaxima.
The source of this Maxima session can be downloaded here.